SOTiny ${ }^{\text {Tw }}$ Low Resistance, Low -Voltage Single-Supply SPDT Switch

Features

\rightarrow Low On-Resistance: 10 -ohm max.
$\rightarrow \mathrm{R}_{\mathrm{ON}}$ Matching: 2-ohm max.
$\rightarrow \mathrm{R}_{\mathrm{ON}}$ Flatness: 3.5-ohm max.
\rightarrow Low 0.5 nA Input Leakage at $25^{\circ} \mathrm{C}$
$\rightarrow 2 \mathrm{~V}$ to 6 V Single-Supply Operation
\rightarrow Fast Switching Time

- 15 ns ton
- 7ns toff
\rightarrow Break-Before-Make Switching Guaranteed
\rightarrow 5pC max Charge Injection
$\rightarrow 225 \mathrm{MHz}$ Channel Bandwidth
$\rightarrow 76 \mathrm{~dB}$ Off-Isolation at 1 MHz
\rightarrow TTL/CMOS Logic Compatible
\rightarrow Low Power Consumption: $5 \mu \mathrm{~W}$
\rightarrow Improved Direct Replacement for MAX4599
\rightarrow Packaging (Pb-free \& Green available):

> 6-pin Small Compact SC70 (C)
> 6-pin SOT23(T)

Applications

\rightarrow Communication Circuits
\rightarrow Cellular Phones
\rightarrow Audio and Video Signal Routing
\rightarrow Portable Battery-Operated Equipment
\rightarrow Data Acquisition Systems
\rightarrow Computer Peripherals
\rightarrow Telecommunications
\rightarrow Relay Replacement
\rightarrow Wireless Terminals and Peripherals

Truth Table

	PI5A4599A	
Logic	NC	NO
0	ON	OFF
1	OFF	ON

Description

The PI5A4599A is an improved, direct replacement for the MAX4599 single-pole, double-throw (SPDT) analog switch. Improved specifications include a low maximum ON resistance of 10 -ohm and fast switching times (t ON $=15 \mathrm{~ns}$ max., $\mathrm{t}_{\mathrm{OFF}}=7 \mathrm{~ns}$ max.) with 5 V supply operation. With a 2.5 V supply, resistance is a low 400-ohm max.
Specifications are given for $2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5 V power supply operation. Operating voltage range is 2.0 V to 6.0 V .
To minimize PC board area use, the PI5A4599A is available in a compact 6-pin SC70 package. Operating temperature range is $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Functional Diagram, Pin Configuration

Absolute Maximum RatingsVoltages Referenced to GND
V+..
$\qquad$$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{Com}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}$ (Note 1).
\qquad -0.5 V to $\mathrm{V}_{\mathrm{Cc}}+2 \mathrm{~V}$ or 30 mA , whichever occurs first
Current (any terminal) \qquad $\pm 30 \mathrm{~mA}$
Peak Current, COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle). \qquad $\pm 30 \mathrm{~mA}$

Thermal Information

Continuous Power Dissipation
SC70-6 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .245 mW

Storage Temperature. \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s).
$+300^{\circ} \mathrm{C}$

Note: Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply $(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{VINH}=2.4 \mathrm{~V}, \mathrm{VINL}=0.8 \mathrm{~V})$

Parameter	Symbol	Conditions	Temp. (C°)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	Vanalog		Full			V+	V
On Resistance	RoN	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.5 \mathrm{~V} \end{aligned}$	25		7	8	Ω
			Full			10	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\text {ON }}$		25		0.1	0.5	
			Full			1	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{RFLAT}_{(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.5 \mathrm{~V}, 4 \mathrm{~V} \end{aligned}$	25		2.72	3.5	
			Full			4	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO}(\text { (OFF) })}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	25	-0.5	0.18	0.5	nA
			Full	-5		5	
COM Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM (OFF) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 0 \mathrm{~V} \end{aligned}$	25	-1.0	20	1.0	
			Full	-10		10	
On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+4.5 \mathrm{~V} \end{aligned}$	25	-1.0	20	1.0	
			Full	-10		10	

Electrical Specifications - Single +5V Supply ($\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{VINH}=2.4 \mathrm{~V}, \mathrm{VINL}=0.8 \mathrm{~V}$)

Parameter	Symbol	Conditions	Temp. (C°)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed logic High Level	Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.8	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1	0.005	1	
Input Current with Voltage Low	IINL	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1	0.005	1	
Dynamic							
Turn-On Time	ton	$V_{C C}=5 \mathrm{~V}$, Figure 1	25		7	15	ns
			Full			20	
Turn-Off Time	toff		25		1	7	
			Full			10	
Break-Before-Make	$t_{\text {bBM }}$	Figure 3	25			10	
			Full	5			
Charger Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=\operatorname{lnF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text {, Figure } 2 \end{aligned}$	25		1.5	5	pC
Off Isolation	OIRR	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$			80		dB
Crosstalk ${ }^{(8)}$	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz}, \text { Figure } 5 \end{aligned}$			80		
NC or NO Capacitance	$\mathrm{C}_{\text {(ofF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6			5.0		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$				5.0		
COM ON Capacitance	Ccom(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7			13		
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 8	Full		300		MHz
Supply							
Power Supply Range	V+		Full	2		6	V
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max .-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 3 .
8. Between any two switches. See Figure 4.

Electrical Specifications - Single +3.3V Supply
$(\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{VINH}=2.4 \mathrm{~V}, \mathrm{VINL}=0.8 \mathrm{~V})$

Parameter	Symbol	Test Conditions	Temp. (C°)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	Vanalog			0		V+	V
On Resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25		12	14.0	Ω
			Full			17	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$	25		0.2	0.5	
			Full			1	
On-Resistance Flatness ${ }^{(3,5)}$	$\mathrm{RFLAT}_{(\mathrm{ON})}$		25		5	4	
			Full			5	
Logic Input							
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed logic High Level	Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.8	
Input High Current	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1		1	
Input Low Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1		1	
Dynamic							
Turn-On Time	ton	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V},$ Figure 1	25		15	25	ns
			Full			40	
Turn-Off Time	toff		25		1.5	12	
			Full			20	
Break-Before-Make	$\mathrm{t}_{\text {BBM }}$	Figure 3	25		10		
			Full	5			
Charger Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=\ln \mathrm{F}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text {, Figure } 2 \end{aligned}$	25		1.3	5	pC
Supply							
Positive Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or } \mathrm{V}+$ All channels on or off	Full			1	$\mu \mathrm{A}$

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max$. $-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4.
8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

$(\mathrm{V}+=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{VINH}=2.4 \mathrm{~V}, \mathrm{VINL}=0.8 \mathrm{~V})$

Parameter	Symbol	Test Conditions	Temp. (C°)	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	Vanalog			0		V+	V
On Resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25		20	22	Ω
			Full			26	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$	25		0.3	0.5	
			Full			1	
On-Resistance Flatness ${ }^{(3,5)}$	$\operatorname{RFLAT}_{(\mathrm{ON})}$		25		0.5	6	
			Full			6	
Logic Input							
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Guaranteed logic High Level	Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.8	
Input High Current	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1		1	
Input Low Current	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1		1	
Dynamic							
Turn-On Time	t_{ON}	$\mathrm{V}+=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$ Figure 1	25		20	30	ns
			Full		-	45	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		25			20	
			Full		-	30	
Break-Before-Make	$\mathrm{t}_{\text {BBM }}$	Figure 3	25		10		
			Full	5			
Charger Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \end{aligned}$	25		0.9	5	pC
Supply							
Positive Supply Current	I+	$\mathrm{V}+=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+$ All channels on or off	Full			1	$\mu \mathrm{A}$

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max .-\mathrm{R}_{\mathrm{ON}} \min$.
5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 4.
8. Between any two switches. See Figure 5.

C C S A S A CAPAC A C

C

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

Figure 4. Off Isolation/On-Channel Bandwidth

Figure 6. Channel-Off Capacitance

Figure 8. Bandwidth

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance

Packaging Mechanical: 6-Pin SC70 (C)

Note:
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Packaging Mechanical: 6-Pin SOT23 (T)

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.45
A1	0.00	-	0.15
A2	0.90	1.15	1.30
b	0.35	--	0.50
c	0.08	--	0.22
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.75
L	0.30	0.45	0.60
L1	0.60 REF		
R	0.10	--	--
R1	0.10	--	0.25
θ	0^{*}	$4{ }^{*}$	8°
e	0.95 BSC		
e1	1.90 BSC		

DETAIL B

VIEW A-A
. ALL DIMENSIONS IN MILIMETERS. ANGLES IN DEGREES
2. DIMENSIONS EXCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
3. REFER EIAJ SC74A AND JEDEC MO-178.

(4) PER/COM		
Enabling serial connectivity		
DESCRIPTION: 6-pin, Small Outline Transistor Plastic Package (SOT23)		
PACKAGE CODE: T (T6)		
DOCUMENT CONTROL \#: PD-1912		REVISION: C

09-0131
Note:
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Type	Top Mark
PI5A4599ACEX	C	Pb-free \& Green, 6-pin SC70	$\overline{\mathrm{Z} N}$
PI5A4599ATX	T	6-pin SOT23	ZN
PI5A4599ATEX	T	$\overline{\mathrm{Z} N}$	

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. "E" denotes Pb -free and Green
3. Adding an " X " at the end of the ordering code denotes tape and reel packaging
