FEATURES

■ Differential D, clock and Q
■ Extended 100E Vee range of 4.2 V to -5.5 V
■ Vbв output for single-ended use
■ 1100MHz min. toggle frequency
■ Edge-triggered asynchronous set and reset
■ Fully compatible with Motorola MC10E/100E431
■ Available in 28-pin PLCC package

BLOCK DIAGRAM

DESCRIPTION

The SY10/100E431 are 3-bit flip-flops with differential clock, data input and data output.

The asynchronous Set and Reset controls are edgetriggered rather than level controlled. This allows the user to rapidly set or reset the flip-flop and then continue clocking at the next clock edge without the necessity of de-asserting the set/reset signal (as would be the case with a level controlled set/reset).

The E431 is also designed with larger internal swings, an approach intended to minimize the time spent crossing the threshold region and thus reduces the metastability susceptibility window.

PIN NAMES

Pin	Function
$D[0: 2], \overline{\mathrm{D}}[0: 2]$	Differential Data Inputs
$\mathrm{CLK}[0: 2], \overline{\mathrm{CLK}}[0: 2]$	Differential Clock Inputs
$\mathrm{S}[0: 2]$	Edge Triggered Set Inputs
$\mathrm{R}[0: 2]$	Edge Triggered Reset Inputs
VBB	VBB Reference Output
$\mathrm{Q}[0: 2], \overline{\mathrm{Q}}[0: 2]$	Differential Data Outputs
Vcco	Vcc to Output

TRUTH TABLE(1)

Dn	CLKn	Rn	Sn	Qn
L	Z	L	L	L
H	Z	L	L	H
X	L	Z	L	L
X	L	L	Z	H

NOTE:

1. $\mathrm{Z}=$ LOW-to-HIGH transition.

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10E431JC	J28-1	Commercial	SY10E431JC	Sn-Pb
SY10E431JCTR $^{(2)}$	J28-1	Commercial	SY10E431JC	Sn-Pb
SY100E431JC	J28-1	Commercial	SY100E431JC	Sn-Pb
SY100E431JCTR ${ }^{(2)}$	J28-1	Commercial	SY100E431JC	Sn-Pb
SY10E431JZ(3)	J28-1	Commercial	SY10E431JZ with Pb-Free bar-line indicator	Matte-Sn
SY10E431JZTR ${ }^{(2,3)}$	J28-1	Commercial	SY10E431JZ with Pb-Free bar-line indicator	Matte-Sn
SY100E431JZ(3)	J28-1	Commercial	SY100E431JZ with Pb-Free bar-line indicator	Matte-Sn
SY100E431JZTR ${ }^{(2,3)}$	J28-1	Commercial	SY100E431JZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, DC Electricals only.
2. Tape and Reel.
3. Pb -Free package is recommended for new designs.

DC ELECTRICAL CHARACTERISTICS

Vee = Vee (Min.) to Vee (Max.); Vcc = Vcco = GND

	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			TA $=+25^{\circ} \mathrm{C}$			$\mathrm{TA}=+8{ }^{\circ} \mathrm{C}$			Unit	Condition
Symbol		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
Vbb	Output Reference Voltage 10 E 100 E	$\begin{aligned} & -1.38 \\ & -1.38 \end{aligned}$	-	$\left\lvert\, \begin{aligned} & -1.27 \\ & -1.26 \end{aligned}\right.$	$\begin{aligned} & -1.35 \\ & -1.38 \end{aligned}$	-	$\begin{aligned} & -1.25 \\ & -1.26 \end{aligned}$	$\begin{aligned} & -1.31 \\ & -1.38 \end{aligned}$	-	$\begin{aligned} & -1.19 \\ & -1.26 \end{aligned}$	V	-
IIH	Input HIGH Current	-	-	150	-	-	150	-	-	150	$\mu \mathrm{A}$	-
IEE	Power Supply Current $\begin{array}{r} 10 \mathrm{E} \\ 100 \mathrm{E} \end{array}$	-	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	-	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	-	$\begin{aligned} & 110 \\ & 127 \end{aligned}$	$\begin{aligned} & 132 \\ & 152 \end{aligned}$	mA	-
VcmR	Common Mode Range	-1.5	-	0	-1.5	-	0	-1.5	-	0	V	1

Notes:

1. Vcmr is referenced to the most positive side of the differential input signal. Normal operation is obtained when the input signals are within the VcmR range and the input swing is greater than VPP (min.) and $<1 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS

Vee = Vee (Min.) to Vee (Max.); $\mathrm{Vcc}=\mathrm{Vcco}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			TA $=+25^{\circ} \mathrm{C}$			$\mathrm{TA}=+8{ }^{\circ} \mathrm{C}$			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
fmax	Max. Toggle Frequency	1100	1400	-	1100	1400	-	1100	1400	-	MHz	-
tPD	Propagation Delay to Output CLK (Diff) CLK (SE) R S	$\begin{aligned} & 450 \\ & 400 \\ & 550 \\ & 550 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 725 \\ & 725 \end{aligned}$	$\begin{aligned} & 750 \\ & 800 \\ & 925 \\ & 925 \\ & \hline \end{aligned}$	$\begin{array}{r} 450 \\ 400 \\ 550 \\ 550 \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & 600 \\ & 725 \\ & 725 \end{aligned}$	$\begin{aligned} & 750 \\ & 800 \\ & 925 \\ & 925 \end{aligned}$	$\begin{array}{r} 450 \\ 400 \\ 550 \\ 550 \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & 600 \\ & 725 \\ & 725 \end{aligned}$	$\begin{aligned} & 750 \\ & 800 \\ & 925 \\ & 925 \end{aligned}$	ps	-
ts	Set-up Time D R S	$\begin{gathered} 200 \\ 1000 \\ 1000 \end{gathered}$	$\begin{gathered} 0 \\ 700 \\ 700 \end{gathered}$	-	$\begin{gathered} 200 \\ 1000 \\ 1000 \end{gathered}$	$\begin{gathered} 0 \\ 700 \\ 700 \end{gathered}$	-	$\begin{gathered} 200 \\ 1000 \\ 1000 \end{gathered}$	$\begin{gathered} 0 \\ 700 \\ 700 \end{gathered}$	-	ps	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
tH	Hold Time, D	200	0	-	200	0	-	200	0	-	ps	-
tPW	Minimum Pulse Width, CLK	400	-	-	400	-	-	400	-	-	ps	-
tskew	Within-Device Skew	-	50	-	-	50	-	-	50	-	ps	2
VPP (AC)	Minimum Input Swing	150	-	-	150	-	-	150	-	-	mV	3
$\begin{aligned} & \mathrm{tr} \\ & \mathrm{tf} \end{aligned}$	Rise/Fall Time 20\% to 80\%	275	450	650	275	450	650	275	450	650	ps	-

Notes:

1. These set-up times define the minimum time the CLK or SET/RESET input must wait after the assertion of the RESET/SET input to assure the proper operation of the flip-flop.
2. Within-device skew is defined as identical transitions on similar paths through a device.
3. Minimum input swing for which AC parameters are guaranteed.

28-PIN PLCC (J28-1)

Rev. 03

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2006 Micrel, Incorporated.

