
xCORE VocalFusion Control Users Guide

IN THIS DOCUMENT

· Introduction

· Controllable Entities

· Enabling Control in the Firmware

· Building the Command-line Utility

· Windows Driver Installation for USB control

· I2C Control Setup on Raspberry Pi

· Using the command-line utility

· Making Changes Permanent

· Appendix

1 Introduction

This document describes how to use the provided command-line utilities to read
and update the user configurable parameters on xCORE VocalFusion devices and
evaluation kits.

The underlying mechanism for the control is provided by the lib_device_control
library. This library implements host and device side APIs to provide acknowledged
transport of control messages. A range of control transport mechanisms are
available including USB, I2C and xSCOPE. This allows changing of the xCORE
VocalFusion parameters at runtime to meet specific application needs and available
interfaces on the host.

For details on the architecture and implementation of parameter control within the
firmware please refer to VocalFusion Software Design Guide1. The XVF3000/3100
DSP Databrief 2 details the DSP processing of the VocalFusion stack.

2 Controllable Entities

Two suites of algorithms are available for use with xCORE VocalFusion devices,
SmartHome and SmartTV.

· SmartHome supports circular arrays to deliver 360° coverage and has been
developed specifically for the demands of far-field voice control and audio
applications in conference and living room scenarios

1http://www.xmos.com/published/vocalfusion-software-design-guide
2https://www.xmos.com/published/xvf3000/3100-dsp-databrief

Publication Date: 2017/12/2 Document Number: XM011319A

XMOS © 2017, All Rights Reserved

http://www.xmos.com/published/vocalfusion-software-design-guide
https://www.xmos.com/published/xvf3000/3100-dsp-databrief

xCORE VocalFusion Control Users Guide 2/19

· SmartTV supports linear arrays to provide up to 180° coverage and has been
developed for far-field voice control in TV and/or video applications.

Each firmware variant exposes different runtime controllable parameters.

All xCORE VocalFusion firmware broadly divides its microphone processing into
two logical blocks: Acoustic Echo Cancellation (AEC) and Beamforming & Post-
processing (BAP). Each block resides on a different tile and each has multiple
control parameters associated with it. Internally two xC interfaces, i_control[0..1],
are used to connect the control I/O interface to the AEC and BAP controllable
entities.

Host
computer

Far-end
signal

BAP Decimate AEC Mic
Out

PDM Mics

AEC = Acoustic Echo
 Cancellation

BAP = Beamforming &
 Post-processing

I/O

I/O

I/O

I/
O

Control interface

Figure 1:

High level
view of

parameter
control

A list of the available parameters that are runtime controllable can be found in the
appendix in the following the tables:

· Commands for all firmware variants - params_both

· Additional commands for SmartHome only - params_smarthome

· Additional commands for SmartTV only - params_smarttv

XM011319A

xCORE VocalFusion Control Users Guide 3/19

3 Enabling Control in the Firmware

If you are using a pre-compiled binary file and wish to have control enabled, ensure
you use builds with the ctl phrase in the binary name. For example, builds
1i2o2_cir43_usbctl or 1i0o0_cir43_i2s_only_48khz_i2cctl both have control
enabled.

The code for control is guarded by pre-processor #ifs. Figure 2 summarizes the
#define(s) required enable control over a particular transport. Note that it is typical
to add these defines to the Makefile build configuration so that all source files
within the project receive the define. The Makefile argument to do that is provided
in the last column.

Transport Defines to set to 1 Makefile arguments

USB BECLEAR_CONTROL_USB
USB_CONTROL_DESCS

-DBECLEAR_CONTROL_USB=1
-DUSB_CONTROL_DESCS=1

I2C BECLEAR_CONTROL_I2C -DBECLEAR_CONTROL_I2C=1

xSCOPE BECLEAR_CONTROL_XSCOPE -fxscope
-DBECLEAR_CONTROL_XSCOPE=1

Figure 2:

Enabling
control in the

firmware
using defines

When enabling xSCOPE control, in addition to enabling the control code using the
#define, the tools-provided xSCOPE library must be linked into the application
using the -fxscope argument.

4 Building the Command-line Utility

XMOS provides example command-line utilities for controlling parameters inside
the xCORE VocalFusion firmware.

The command-line utilities are supplied as source with Makefiles for building under
multiple platforms. The utility may be built from the source using commonly
available compilers. The following instructions provide step-by-step guides to
building the binary/executable.

Open a xTIMEcomposer command-line window and navigate to the directory con-
taining the command-line utility:

lib_xbeclear/host/control/

And then use the following to build:

Microsoft Visual Studio is required to compile the host control utility. It has
been tested with Microsoft Visual Studio Community 2015 (Version 14.0.23107.0
D14REL).

· nmake /f Makefile.Win32

The above command will build two binaries vfctrl_xscope and vfctrl_usb which
support xSCOPE and USB control transports.

XM011319A

xCORE VocalFusion Control Users Guide 4/19

Xcode is required to compile the host controller on macOS.

· make -f Makefile.OSX

The above command will build two binaries vfctrl_xscope and vfctrl_usb which
support xSCOPE and USB control transports.

g++ is required to compile the host controller on Linux.

For linux x86 hosts:

· make -f Makefile.Linux64

The above command will build two binaries vfctrl_xscope and vfctrl_usb which
support xSCOPE and USB control transports.

For linux ARM running on a Raspberry Pi 3:

· make -f Makefile.Pi

The above command will build two binaries vfctrl_usb and vfctrl_i2c which
support USB and I2C control transports.

5 Windows Driver Installation for USB control

The xCORE VocalFusion device with USB host connection is a composite USB device
which requires a driver to be installed for the control interface when used with
Windows. The driver is installed by locating the device in Device manager. Select
Control Panel · Device Manager. For other OS’s or embedded hosts this step is
not required.

Figure 3:

Device before
driver install

XM011319A

xCORE VocalFusion Control Users Guide 5/19

When you plug in the board on a fresh system, two unknown devices will appear,
XMOS Control and XMOS DFU. Right click on XMOS Control and select Update
Driver Software....

Figure 4:

Update the
driver

Select Browse for driver software on your computer, or equivalent, and select
the lib_xbeclear/host/control/libusb/Win32/driver folder.

Figure 5:

Locate the
driver

The driver should be installed and create a device called XMOS Microphone Array
Control.

Note that the XMOS DFU device remains unrecognized at this point. DFU host utili-
ties are available for Raspberry Pi, Linux and macOS, please see xCORE VocalFusion
software design guide.

The Windows host is now ready to send control requests to the device.

XM011319A

xCORE VocalFusion Control Users Guide 6/19

Figure 6:

Once the
driver has

been
installed

5.1 Windows Driver Issues

1. If the driver installation hangs (seen on Windows 7):

Disable checking the driver store. Control Panel · Change device installation
settings · No let me choose what to do · Never install driver software
from Windows Update

2. If Windows Security says it can’t verify the publisher of the driver

Select Install this driver software anyway. This often results in a working
driver on Windows 7.

3. There is a known issue with the Windows device driver where on systems running
Windows 10 Anniversary Update and newer, the driver will not install correctly.
This is because the driver signing method used is not the new attestation
signing. The issue is being reviewed. In the mean-time, disabling driver signing
checking allows the driver to install.

Figure 7:

Windows
Security

6 I2C Control Setup on Raspberry Pi

It is possible to control device parameters via I2C, the device being an I2C slave at
bus address 0x2c. It is recommended this is evaluated using a Raspberry Pi 3.

XM011319A

xCORE VocalFusion Control Users Guide 7/19

The I2C control implementation requires support for clock stretching. This is
because transactions need to wait for xCORE VocalFusion to finish processing a
sample block before it can service the control request. It also requires support
for repeated starts where two back-to-back transactions are concatenated with
only a single stop bit at the end of the last transfer. This is part of the underlying
lib_device control library requirements. The Raspberry Pi 3 has a built in I2C
peripheral inside the BCM2837 and can be made to support repeated starts however
the chip contains a bug3 in the clock stretching implementation. This means that it
will not sample the clock line on every clock. This bug will cause some transactions
to fail.

In order to workaround the Raspberry Pi 3 I2C bug it is recommended to use the
i2c-gpio module built into recent versions of Raspbian Jessie, from around June
2016 Jessie. This driver, which uses bit banging to emulate an I2C host, fully
supports clock stretching and repeated starts by default. The below instructions
describe how to replace the hardware I2C driver with the bit-banged I2C driver and
conveniently instantiate the new I2C driver on the same bus ID and use the same
physical GPIO pins as the hardware. This means that its use over hardware I2C is
transparent.

To avoid recompilation of the Linux kernel a loadable kernel module is used to
insert the new driver into the OS. A full description of how to do this can be found
in the link below4, however a brief summary of the required steps, found to work
on a clean copy of Debian Jessie shipped with Noobs is provided in the instructions
below:

6.1 Update Raspbian

First, update the Raspbian Linux distribution to the latest version (version 4.4.26-
v7+ tested). This may take a few hours:

sudo apt -get update
sudo apt -get dist -upgrade

Before proceeding with the next steps, ensure you have re-booted your Raspberry Pi
3 so that it is running the latest version of Raspbian that you have just downloaded.
This can be done using the following command:

sudo reboot

6.2 Disable Native I2C

Now you have an updated OS, you should disable the hardware I2C on your
Raspberry Pi 3, which is a straightforward operation using device tree. To do this,
edit the file /boot/config.txt to remove the comment around line 46 and set it as
follows:

3https://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
4http://www.thegeekstuff.com/2012/04/linux-lkm-basics/

XM011319A

https://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
http://www.thegeekstuff.com/2012/04/linux-lkm-basics/

xCORE VocalFusion Control Users Guide 8/19

dtparam=i2c_arm=off

You will need to reboot for this change to take effect.

6.3 Build Kernel Module for Bitbanged I2C

Next, download the kernel source (this may also take a long time to download
and extract). The source download script requires the installation of two helper
applications that are not installed by default. The installation of these is included
below:

sudo apt -get install bc
sudo apt -get install libusb -1.0-0-dev libreadline -dev libncurses5 -dev
git clone http :// github.com/notro/rpi -source
cd rpi -source
python rpi -source
cd ..

For further information on building and loading modules under Linux the link
below provides a useful reference5.

Next we need to download the kernel module loader source which presents the
driver as a loadable module to the OS:

git clone https :// github.com/kadamski/i2c -gpio -param.git
cd i2c -gpio -param
make

If the git clone command doesn’t work, clone the module directly from the URL
above as a zip file, extract it and rename the folder as i2c-gpio-param.

On running make you should see a console output similar to this:

pi@raspberrypi :~/i2c -gpio -param $ make
make -C /lib/modules/`uname -r`/build M=/home/pi/i2c -gpio -param modules
make [1]: Entering directory '/home/pi/linux -1315
↩ ab6319b02a436a6c1a2b38608e52b94d22fb '

CC [M] /home/pi/i2c -gpio -param/i2c -gpio -param.o
Building modules , stage 2.
MODPOST 1 modules
CC /home/pi/i2c -gpio -param/i2c -gpio -param.mod.o
LD [M] /home/pi/i2c -gpio -param/i2c -gpio -param.ko
make [1]: Leaving directory '/home/pi/linux -1315
↩ ab6319b02a436a6c1a2b38608e52b94d22fb '

5http://www.cyberciti.biz/tips/build-linux-kernel-module-against-installed-kernel-source-tree.html

XM011319A

http://www.cyberciti.biz/tips/build-linux-kernel-module-against-installed-kernel-source-tree.html

xCORE VocalFusion Control Users Guide 9/19

6.4 Load Kernel Module

And finally the module needs inserting into the kernel and the driver needs instan-
tiating with the correct parameters. For help regarding use of the bit-banged I2C
module please checkout the documentation at the i2c-gpio-param repo6.

Save the following text in the script file load_i2c-gpio_driver.sh in your home
directory:

start i2c -gpio directory
cd /home/pi/i2c -gpio -param
load the i2c bit banged driver
sudo insmod i2c -gpio -param.ko
instantiate a driver at bus id=1 on same pins as hw i2c with 60s timeout
sudo bash -c 'echo "1 2 3 5 6000 0 0 0" > /sys/class/i2c -gpio/add_bus '
remove the default i2c -gpio instance
sudo bash -c 'echo "7" > /sys/class/i2c -gpio/remove_bus '
return to previous dir
cd /home/pi/

Now you can simply run the newly created shell script to enable the bit-banged I2C
driver:

sh load_i2c -gpio_driver.sh

6.5 Set Up the Hardware

You should then attach the pins in the following manner (see also Figure 8). The
full pinout of the Raspberry Pi header can be viewed from the link below7.

· Attach the Raspberry Pi SDA pin 3 (BCM2) to pin 9 (X0D24) of Expansion Header
J5.

· Attach the Raspberry Pi SCL pin 5 (BCM3) to pin 12 (X0D25) to Expansion Header
J5.

· Ground should also be shared - available on Raspberry Pi pin 6 to one of pins 2,
6, 8, 14, 15, 16 of Expansion Header J5.

Now run the command:

i2cdetect -y 1

to check that the Raspberry Pi host can see the device before running the host
application. It should show a device at address 0x2c. If it does not check your
wiring between the Raspberry Pi and the xCORE VocalFusion board and ensure you
are running a version of firmware with I2C control enabled (i2cctl is contained in
the binary name).

6https://github.com/kadamski/i2c-gpio-param
7https://pinout.xyz/pinout/i2c

XM011319A

https://github.com/kadamski/i2c-gpio-param
https://pinout.xyz/pinout/i2c

xCORE VocalFusion Control Users Guide 10/19

Figure 8:

Raspberry Pi
connection

for I2C
control

Following the instructions given so far will enable the bit-banged I2C driver in
the current session. To make it available automatically after reach reboot, it is
necessary to load the module at boot time. You can do this by adding a boot-
time cron job to run the above shell script. The script can auto-run at boot
time by adding the following line in the editor window that appears after typing
sudo crontab -e:

@reboot sh /home/pi/load_i2c -gpio_driver.sh

7 Using the command-line utility

Depending on the transport used for control the binaries have either the suffix
_usbctl, _xscopectl or _i2cctl for USB, xSCOPE and I2C control respectively. It

XM011319A

xCORE VocalFusion Control Users Guide 11/19

should be noted that the xSCOPE binary must be run on the device in the following
manner:

xrun --xscope -port localhost :10101 <file_name >.xe

Firmware supporting control transports other then xSCOPE is run using xrun
without --xscope-port, or xflash.

Once this program is running, you can then start the host application.

To use the application just run the utility file and add the control parameter as an
argument after the binary name. The command for the utility files depends on the
platform and the communication protocol, for example assuming we have a USB
binary, we have:

in Windows:

· bin/vfctrl_usb.exe

in macOS:

· ./bin/vfctrl_usb

in Linux:

· sudo ./bin/vfctrl_usb

The following udev rule (goes in /etc/udev/rules.d) should allow running the USB
utility as a regular user. See customdefines.h to confirm your product ID. Most
configurations are USB audio class 1.0 and have PID 0x11. Class 2.0 configurations
should have PID 0x10.

ATTR{idVendor }=="20B1", ATTR{idProduct }=="0011"
GROUP="plugdev"

The xSCOPE command-line utility must be run with the IP address and port as
second and third command-line parameter, respectively. For example in a Windows
machine using a local port 10101:

./bin/vfctrl_xscope.exe localhost 10101

7.1 Read a control parameter

If no further arguments are added then the control utility will read the specified
parameter and print the current value. For example:

$./bin/vfctrl_usb GAMMAVAD_SR
GAMMAVAD_SR :1.5

XM011319A

xCORE VocalFusion Control Users Guide 12/19

7.2 Write a control parameter

If you wish to write to a parameter then add the value to be written as the last
argument to the command line:

$./bin/vfctrl_usb GAMMAVAD_SR 3.8
GAMMAVAD_SR :3.8

7.3 List control parameters

If the parameter can not be found or the value requested to be written is outside
of bounds then an error message will be shown. To obtain a list of controllable
parameters type:

$./bin/vfctrl_usb parameters

This will display available parameters and relate details, for example:

paramater type max min r/w info
--------- ---- --- --- --- ----
AECFREEZEONOFF int 1 0 read -write ...
AECNORM float 16 0.25 read -write ...
AECPATHCHANGE int 1 0 read -only ...
RT60 float 0.9 0.25 read -only ...
...

Further information can be found by typing the help command:

$./bin/vfctrl_usb help
Connected to a SmartHome device.
Usage:

<parameter > Return the current value of <parameter >
<parameter > <value > Assign <value > to <parameter >
help (h) Display this information
help (h) <parameter > Display information for <parameter >
parameters (p) Display the list of parameters

7.4 Known issues and limitations

· The commands AGCTIME and AGCGAIN are read-write, but the values read back
are normally different from the ones written by the user. The value of the AGCTIME
is used to calculate an internal AGC coefficient, so reading the parameter back
returns this internal AGC coefficient. The value of the AGCGAIN instead can
change due to floating point conversion.

· The value of the GAMMA_NN_SR in the SmartHome version of xCORE VocalFusion
is not read back correctly: it reports the value of GAMMA_NN. Despite reading the

XM011319A

xCORE VocalFusion Control Users Guide 13/19

wrong value, the GAMMA_NN_SR is set correctly during the write operation. This
problem is not seen the SmartTV version and it is a known issue.

· xCORE VocalFusion board in I2S configuration requires running I2S clocks for
I2C control to work. Configurations that are I2S master will always have running
clocks. Configurations that are I2S slave need to have a master present supplying
clocks.

· If i2cdetect -y 1 shows a device present but vfctl_i2c returns the error rdwr ioctl
error -1: No such device or address then there are two things to try. Firstly,
ensure that xCORE VocalFusion is supplied with a valid MCLK, BCLK and LRCLK
signal from the I2S master. It cannot complete a control transaction unless it is
properly clocked. Secondly, it has been found that on some Raspberry Pi 3s the
I2C address requires left shifting by 1 to be accepted as 0x2c. Try changing the
line control_init_i2c(0x2c << 0) to control_init_i2c(0x2c << 1) in the file host.c
and rebuild.

8 Making Changes Permanent

Once the control mechanism has been used to evaluate the various settings it may
be desired to make “permanent” changes to the default parameter settings.

This should be done in the xCORE VocalFusion source code, typically in the
beclear_conf.h header filer. Further details can be found in the Software De-
sign Guide.

9 Appendix

9.1 Resource utilization

Enabling control within the firmware will utilize additional chip resources. The
amount of extra resources utilized depends on the transport chosen and the
existing xCORE VocalFusion functionality. For example, adding control over USB to
a USB Audio connected configuration may consume an additional 5KB of memory,
3 channel ends and no extra processing resource. Whereas adding control over
I2C to an I2S connected configuration may consume an additional 9KB of memory,
5 channels ends and one extra logical core needed to implement the I2C slave
peripheral and control decoding.

XM011319A

xCORE VocalFusion Control Users Guide 14/19

9.2 Controllable parameters

The tables below detail the control parameters supported in xCORE VocalFusion.
There are two functional groups: AEC (Adaptive Echo Cancellation) and BF-BP/BAP
(BeamForming and Post processing).

You may also view this list by running the command utility with the parameters
argument.

The user configurable AEC parameters are listed in Table 1 and the configurable
Beamformer and Post Processor parameters are listed in Tables 2 and 3.

parameter type range description

AECFREEZEONOFF APES_INT [0,1] Adaptive Echo Canceler updates inhibit
(read-write).

0 = Adaptation enabled (default)

1 = Freeze adaptation, filter only

AECNORM APES_FLOAT1 [0.25 .. 16.0] Limit on norm of AEC filter coefficients
(read-write).

(default: 2.0)

AECSILENCELEVEL APES_FLOAT1 [0.0 .. 1.0] Threshold for signal detection in AEC
(read-write). [−∞ .. 0] dBov

(default: -80dBov ≈ 10log10(1 · 10−8))
AECSILENCEMODE APES_INT 0,1] AEC far-end silence detection status

(read-only).

0 = false (signal detected)

1 = true (silence detected)

HPFONOFF APES_INT [0..3] High-pass Filter on microphone signals
(read-write).

0 = OFF

1 = ON - 70 Hz cut-off (default)

2 = ON - 125 Hz cut-off

3 = ON - 180 Hz cut-off

RT60 APES_FLOAT1 [0.250 .. 0.900] Current RT60 estimate in seconds (read-
only).

(default: 0.500)

RT60ONOFF APES_INT 0,1] RT60 Estimation for AES (read-write).

0 = OFF

1 = ON (default)

Table 1:
Parameter

descriptions
for the AEC

module
(linear and

circular
arrays)

XM011319A

xCORE VocalFusion Control Users Guide 15/19

parameter type range description

AGCDESIREDLEVEL APES_FLOAT1 [0.0 .. 1.0] Target power level of the output signal
(read-write). [−∞ .. 0] dBov

(default: −23 dBov ≈ 10log10(0.005))
AGCGAIN APES_FLOAT1 [1.0 .. 1000.0] Current AGC gain factor (read-write).

[0 .. 60] dB

(default: 0.0 dB = 20log10(1.0))
AGCONOFF APES_INT [0,1] Automatic Gain Control (read-write).

0 = OFF

1 = ON (default)

AGCMAXGAIN APES_FLOAT1 [1.0 .. 1000.0] Maximum AGC gain factor (read-write).
[0 .. 60] dB

(default 30 dB ≈ 20log10(31.6))
AGCTIME APES_FLOAT1 [0.1 .. 1.0] Ramp-up/down time-constant in

seconds(read-write). [0.1 .. 1.0]
(default: 0.9 s)

CNIONOFF APES_INT [0,1] Comfort Noise Insertion (read-write).

0 = OFF

1 = ON (default)

ECHOONOFF APES_INT [0,1] Echo suppression (read-write).

0 = OFF

1 = ON (default)

FREEZEONOFF APES_INT [0,1] Adaptive beamformer and postproces-
sor updates (read-write).

0 = Adaptation enabled (default)

1 = Freeze adaptation, filter only

GAMMA_NN APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of non-
stationary noise (read-write).

min .. max attenuation (default: 1.1)

GAMMA_NS APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of stationary
noise (read-write).

min .. max attenuation (default: 1.0)

MIN_NN APES_FLOAT1 [0.0 .. 1.0] Gain-floor for non-stationary noise sup-
pression (read-write). [−∞ .. 0] dB

(default: −10 dB ≈ 20log10(0.3))
MIN_NS APES_FLOAT1 [0.0 .. 1.0] Gain-floor for stationary noise suppres-

sion (read-write). [−∞ .. 0] dB

(default: −16 dB ≈ 20log10(0.15))
NONSTATNOISEONOFF APES_INT [0,1] Non-stationary noise suppression (read-

write).

0 = OFF

1 = ON (default)

STATNOISEONOFF APES_INT [0,1] Stationary noise suppression (read-
write).

0 = OFF

1 = ON (default)

TRANSIENTONOFF APES_INT [0,1] Transient echo suppression (read-
write).

0 = OFF

1 = ON (default)

Table 2:
Parameter

description
for the BF

and PP (linear
and circular

arrays)

XM011319A

xCORE VocalFusion Control Users Guide 16/19

parameter type range description

FSBPATHCHANGE APES_INT [0,1] FSB Path Change Detection (read-only).

0 = false (no path change detected)

1 = true (path change detected)

FSBUPDATED APES_INT [0,1] FSB Update Decision (read-only).

0 = false (FSB was not updated)

1 = true (FSB was updated)

GAMMA_E APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of echo (direct
and early components) (read-write).

min .. max attenuation (default: 1.0)

GAMMA_ENL APES_FLOAT1 [0.0 .. 5.0] Over-subtraction factor of non-linear
echo (read-write).

min .. max attenuation (default: 1.0)

GAMMA_ETAIL APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of echo (tail
components) (read-write).

min .. max attenuation (default: 1.0)

NLAEC_MODE APES_INT [0..2] Non-Linear AEC training mode (read-
write).

0 = OFF (default)

1 = ON - phase 1

2 = ON - phase 2

NLATTENONOFF APES_INT [0,1] Non-Linear echo attenuation (read-
write).

0 = OFF (default)

1 = ON

VOICEACTIVITY APES_INT [0,1] Signal energy exceeded a threshold
(read-only).

0 = false (no voice activity)

1 = true (voice activity)

KEYWORDDETECT APES_INT [0,1] Keyword detected; current value so
needs polling (read-only).

0 = not detected

1 = detected

DOAANGLE APES_INT [0 .. 359] DOA angle; current value, orientation
depends on build configuration (read-
only).

Table 3:
Parameter

description
for the BF

and PP, linear
and circular

arrays
(continued)

When using Circular Arrays a number of additional user configurable parameters
are available. Tables 4 details the additional AEC parameters and Table 5 details
the additional Beamformer and Post Processor parameters.

parameter type range description

AECPATHCHANGE APES_INT 0,1] AEC Path Change Detection (read-only).

0 = false (no path change detected)

1 = true (path change detected)

Table 4:
Additional

AEC
parameters
for circular

arrays

XM011319A

xCORE VocalFusion Control Users Guide 17/19

parameter type range description

GAMMA_NN_SR APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of non-
stationary noise for ASR (read-write).

min .. max attenuation (default: 1.1)

GAMMA_NS_SR APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of stationary
noise for ASR (read-write).

min .. max attenuation (default: 1.0)

GAMMAVAD_SR APES_FLOAT1 [0.0 .. 1000.0] Set the threshold for voice activity de-
tection (read-write). [−∞ .. 60] dB

(default: 3.5 dB ≈ 20log10(1.5))
MIN_NN_SR APES_FLOAT1 [0.0 .. 1.0] Gain-floor for non-stationary noise sup-

pression for ASR (read-write). [−∞ .. 0]
dB

(default: −10 dB ≈ 20log10(0.3))
MIN_NS_SR APES_FLOAT1 [0.0 .. 1.0] Gain-floor for stationary noise suppres-

sion for ASR (read-write). [−∞ .. 0] dB

(default: −10 dB ≈ 20log10(0.3))
NONSTATNOISEONOFF_SR APES_INT [0,1] Non-stationary noise suppression for

ASR (read-write).

0 = OFF

1 = ON (default)

SPEECHDETECTED APES_INT [0,1] Speech-like signal detected (internal,
read-only).

0 = false (no speech detected)

1 = true (speech detected)

Table 5:
Additional BF

and PP
parameters
for circular

arrays

When using Linear Arrays a number of additional user configurable parameters
are available. Tables 6 details the additional AEC parameters and Table 7 details
the additional Beamformer and Post Processor parameters.

parameter type range description

AECERLMAX APES_FLOAT1 [1.0 .. 316.02] maximum erl estimate (write-only).

(default: 99000.0)

MAX_RT60 APES_FLOAT1 [0.0 .. 0.9] Set the upper limit for the revest T60
estimator in seconds (write-only).

(default: 0.9)

Table 6:
Additional

AEC
parameters

for linear
arrays

XM011319A

xCORE VocalFusion Control Users Guide 18/19

parameter type range description

BEAMANGLE APES_FLOAT1 [−1.0 .. 1.0] Center of the beam for desired speech
sources (read-write). [−90◦ .. 90◦]
(default: 0◦ = sin−1(0.0) 360

2π)

BEAMWIDTH APES_FLOAT1 [0.2 .. 1.0] Width of the beam for desired speech
sources (read-write). [23◦ .. 180◦]
(default: 60◦ ≈ sin−1(0.5) 360

π)

FSBFREEZEONOFF APES_INT [0,1] Adaptive beamformer updates (read-
write).

0 = Adaptation enabled (default)

1 = Freeze adaptation, filter only

SPTHRESH APES_FLOAT1 [0.0 .. 1.0] Set parameter value for DNNS (read-
write).

(default: 0.0065)

SR_ABSQFLOOR APES_FLOAT [0.0 .. 1000.0] Absolute noise floor for voice activity
detection (read-write). [−∞ .. 60] dB

(default: −∞ dB = 20log10(0.0))
SR_GAMMA_NN APES_FLOAT1 [0.0 .. 3.0] Gain-floor for non-stationary noise sup-

pression (read-write).

min .. max attenuation (default: 1.1)

SR_GAMMA_NS APES_FLOAT1 [0.0 .. 3.0] Over-subtraction factor of stationary
noise (read-write).

min .. max attenuation (default: 1.0)

SR_GAMMA_VAD APES_FLOAT1 [0.0 .. 1000.0] Threshold for voice activity detection
(read-write). [−∞ .. 60] dB

(default: 23.5 dB ≈ 20log10(15))
SR_MIN_NN APES_FLOAT1 [0.0 .. 1.0] Gain-floor for non-stationary noise sup-

pression (read-write). [−∞ .. 0] dB

(default: −10 dB ≈ 20log10(0.3))
SR_MIN_NS APES_FLOAT1 [0.0 .. 1.0] Gain-floor for stationary noise suppres-

sion (read-write). [−∞ .. 0] dB

(default: −16 dB ≈ 20log10(0.15))
SR_NONSTATNOISEONOFF APES_INT 0,1] Non-stationary noise suppression for

ASR (read-write).

0 = OFF

1 = ON (default)

SR_STATNOISEONOFF APES_INT [0,1] Stationary noise suppression for ASR
(read-write).

0 = OFF

1 = ON (default)

XNLTRAINONOFF APES_INT [0,1] Non-linear matrix training (read-write).

0 = OFF(default)

1 = ON

Table 7:
Additional BF

and PP
parameters

for linear
arrays

XM011319A

xCORE VocalFusion Control Users Guide 19/19

Copyright © 2017, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XM011319A

	Introduction
	Controllable Entities
	Enabling Control in the Firmware
	Building the Command-line Utility
	Windows Driver Installation for USB control
	I2C Control Setup on Raspberry Pi
	Using the command-line utility
	Making Changes Permanent
	Appendix

